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A Fine-Scale Linkage-Disequilibrium Measure Based on Length
of Haplotype Sharing
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High-throughput genotyping technologies for SNPs have enabled the recent completion of the International HapMap
Project (phase I), which has stimulated much interest in studying genomewide linkage-disequilibrium (LD) patterns.
Conventional LD measures, such as and , are two-point measurements, and their relationship with physical′ 2D r
distance is highly noisy. We propose a new LD measure, D, defined in terms of the correlation coefficient for shared
haplotype lengths around two loci, thereby borrowing information from multiple loci. A U-statistic–based estimator
of D, which takes into consideration the dependence structure of the observed data, is developed and compared
with an estimator based on the usual empirical correlation coefficient. Furthermore, we propose methods for inferring
LD-decay rates and recombination hotspots on the basis of D. The results from coalescent-simulation studies and
analysis of HapMap SNP data demonstrate that the proposed estimators of D are superior to the two most popular
conventional LD measures, in terms of their close relationship with physical distance and recombination rate, their
small variability, and their strong robustness to marker-allele frequencies. These merits may offer new opportunities
for mapping complex disease genes and for investigating recombination mechanisms on the basis of better-quantified
LD.
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Linkage disequilibrium (LD) refers to the association of
alleles at different loci on the same chromosome (Le-
wontin and Kojima 1960). Such allelic associations are
mostly due to physical proximity but could be affected
by mutation, recombination, gene conversion, selection,
genetic drift, or demographic factors such as inbreeding,
migration, and population structure (Xiong and Guo
[1997] and their references). Investigating LD patterns
has profound implications for understanding the archi-
tecture of the human genome, for mapping complex dis-
ease loci on a fine scale, for studying population genetics,
and for elucidating mechanisms of meiotic recombina-
tion. High-throughput genotyping technologies for SNPs
have stimulated much interest in studying fine-scale ge-
nomewide patterns of common DNA variations with the
use of 11 million SNPs from a number of human pop-
ulations (International HapMap Consortium 2003;
Hinds et al. 2005).

Although LD is well defined at a conceptual level,
existing approaches for quantifying LD suffer from a
number of limitations. Conventional LD measures are
typically two-point measures—that is, they quantify LD
between two loci, A and B, on the basis of only the allele
distributions at these two loci, without exploiting in-
formation about the allele distributions of and physical
distances from neighboring loci. Despite their popularity,

and are both sensitive to allele frequencies (Devlin′ 2D r
and Risch 1995) and highly variable in their relationship

with the physical distance, d, between A and B. The
substantial variability of and makes interpretation′ 2D r
of individual LD values challenging. Since average values
of and are generally monotonically related to phys-′ 2D r
ical distance d, LD patterns based on these conventional
measures have been summarized by their average values
(Dawson et al. 2002) or by the fraction of common SNPs
that are in high LD (e.g., ) (Hinds et al. 2005)2r 1 0.8
in a region of empirically chosen size.

With the aim of better quantifying LD, several new
measures based on population genetics models have been
proposed. Morton et al. (2001) proposed an association
probability between a pair of loci, under population ge-
netics assumptions regarding recombination, mutation,
migration, etc. Other measures do not directly quantify
LD in the usual two-locus manner. Instead, LD is as-
sessed in terms of one (reference) locus, by an estimate
of the expected genetic distance from the reference locus
to either edge of an ancestral segment (McPeek and
Strahs 1999) or by an estimate of the population rate
of crossing over (theoretically, a function of expected

) for a given region (Pritchard and Przeworski 2001).2r
For these model-based measures, robustness to any vio-
lation of model assumptions is unknown.

Recognizing the increasing interest in assessing ge-
nomewide LD patterns and the limitations of existing
measures, we propose a new LD measure, D, that bor-
rows information from multiple neighboring loci and
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Figure 1 Conceptual model for motivating the LD measure D. When loci A and B are in complete LD, the lengths of haplotype sharing
around loci A and B are linearly dependent for all chromosome pairs (A). When loci A and B are in LE, the lengths of haplotype sharing around
A and B are independent for all chromosome pairs (B).

does not require restrictive modeling assumptions. For
a reference locus on any chromosome, an ancestral seg-
ment refers to the haplotype preserved from an ancestral
chromosome. The ancestral segment extends in both di-
rections from the reference locus to breakpoints, which
are the closest loci where events such as crossover or
gene conversion occurred during meiosis processes in-
tervening between the ancestral and current chromo-
somes. Given a dense set of markers in a large region,
the lengths of common ancestral segments between chro-
mosomes can be well approximated by the lengths of
shared haplotypes and can lead to a sensible and stable
measure of allelic association between two loci.

In the “Methods” section, we first define D as a func-
tion of the correlation coefficient between the lengths of
common ancestral segments around two loci of interest.
Next, we develop a U-statistic–based estimator of D,

, that takes into account the dependence structure ofUD̂

the observed lengths of shared haplotypes for pairs of
chromosomes. An alternative estimator, , that naivelyD̂

ignores this dependence structure is also proposed as a
simplified and computationally more efficient version. In
the “Results” section, simulation studies show that the
two estimators, and , are strikingly similar. Thus,Uˆ ˆD D

the remaining simulations and applications to HapMap
data focus on properties of the simpler and computa-
tionally more tractable estimator, . A method is pro-D̂

posed for estimating LD-decay rates on the basis of the
tight relationship between and physical distance d.D̂

Then, merits of D are demonstrated by analyzing human
X-chromosome SNP data from the HapMap Project. We
close with a discussion of issues regarding evaluation of
the lengths of common ancestral segments.

Methods

A New LD Measure, D

Figure 1 shows the conceptual model that motivates the
definition of the LD parameter D. For a pair of chromosomes
that share a common ancestor around locus A, denote the
lengths of the ancestral segments from locus A to their re-
spective breakpoints on one side (e.g., right side) by random
variables and . Given a locus B located to the right of AS S1 2

at distance , random variables and can be defined ind T T0 1 2

the same way. In practice, neither the ancestral haplotypes nor
the breakpoints are observable; thus, neither are , , , andS S T1 2 1

. Given a dense set of markers, one may observe the lengthsT2

of haplotypes shared by the chromosome pair that approxi-
mate the lengths of the shared common ancestral segments.
These shared haplotype lengths, denoted by X ≈ min (S ,S )1 2

and , may be measured either by physical dis-Y ≈ min (T ,T )1 2

tance—that is, the number of base pairs (in bp or kb)—or by
genetic distance (in cM). However, the former distance is more
precise and more relevant because the most appropriate type
of data for our proposed methods is that of dense sets of
markers (see the “Results” and “Discussion” sections regard-
ing marker density).

Two main assumptions are involved in approximating the
lengths of shared common ancestral segments by the lengths
of shared haplotypes. One is that mutation on the common
ancestral segment is ignorable, which is reasonable given the
extremely low mutation rate for SNPs. The other is that all
alleles identical by state (IBS) are identical by descent (IBD).
This second assumption may appear strong, yet the “Discus-
sion” section shows that the new LD measure is robust to
violations of the assumption.

Two extreme cases are illustrated in figure 1. When chro-
mosomal segments around loci A and B are co-inherited from
the same ancestor, all alleles between loci A and B are IBD
(under the assumption of no mutation). In this case, A and B
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are in complete LD, and the linear relationship X p Y � d0

holds for all chromosome pairs in the population. This perfect
linear dependence between X and Y is characterized by a Pear-
son correlation coefficient of (fig. 1A). On the otherr p 1xy

hand, when chromosomal segments around loci A and B are
inherited from two independent (unrelated) ancestors, A and
B are in complete linkage equilibrium (LE). In this case, the
above linear relationship does not hold, and X and Y are
independent, corresponding to (fig. 1B). Therefore,r p 0xy

quantifies the magnitude of LD between A and B.rxy

The same situation applies to the lengths of shared haplo-
types on the other side of the reference loci—that is, and′X

in figure 1. However, the relationship between and′ ′Y X � X
is more complex. Therefore, we treat separately the′Y � Y

lengths of haplotype sharing to the right and left sides of the
reference loci. The new LD measure, D, is defined as the ar-
ithmetic mean of and .r r ′ ′xy x y

There is a statistical challenge in estimating D because of
the dependence structure of the observed lengths of shared
haplotypes between pairs of chromosomes. In the following
subsections, an estimator of D is developed on the basis of
unbiased U-statistics (Lee 1990). We first consider the simplest
scenario, in which the sampled haplotypes are distinct by state,
which is the case in practice when the population or number
of markers is large enough. Then, we extend the method to
the general situation where haplotypes are not necessarily
distinct.

An Estimator of D Based on U-Statistics: for DistinctUD̂

Haplotypes

Suppose that one observes n distinct haplotypes, {h :i pi

, for a random sample of n chromosomes from a pop-1,…,n}
ulation of interest. It is assumed that the unobservable ances-
tral segment lengths are independently{(S ,T ):i p 1,…,n}i i

and identically distributed (iid), with joint cumulative distri-
bution function . From ,F(S,T),S � 0,T � 0 {h :i p 1,…,n}i

one observes andX p {X :i,j p 1,…,n,i ! j} Y p {Y :i,j pij ij

, the pairwise lengths of one-sided shared haplo-1,…,n,i ! j}
types for loci A and B, respectively, where indexes the(i,j)

distinct pairs of haplotypes. On the basis of the aforemen-n( )2

tioned assumptions, and .X ≈ min (S ,S ) Y ≈ min (T ,T)ij i j ij i j

As mentioned before, one of the statistical challenges in es-
timating the correlation of X and Y is that neither the norX
the is a set of independent random variables. To develop aY
reasonable estimator for the correlation of X and Y, we use
U-statistics. As shown in the following proposition, the vari-
ances and covariance of X and Y are statistical functionals of
degree 4, with kernels that are symmetric functions of four iid
random variables. Here, a function is said to be symmetric if
it is invariant under permutations of its arguments. As a result,
according to Lee (1990, p. 7), the variances and covariance of
X and Y can be estimated by the average kernels, termed “U-
statistics” because of their unbiasedness. The correlation co-
efficient of X and Y is then estimated by the estimated co-
variance standardized by the estimated SDs of X and Y.

Proposition.—Let be a statistical functional of degree 4jxy

with kernel function w. That is, define asjxy

j p E{w[(S ,T ),…,(S ,T )]}xy 1 1 4 4

� � 4

p … w[(s ,t ),…,(s ,t )] dF(s ,t ) ,�� � 1 1 4 4 i i
ip10 0

where the kernel function is

1
w[(S ,T ),…,(S ,T )] p {[min (S ,S ) �min (S ,S )]1 1 4 4 1 2 3 46

#[min (T ,T ) �min (T ,T )]1 2 3 4

�[min (S ,S ) �min (S ,S )]1 3 2 4

#[min (T ,T ) �min (T ,T )]1 3 2 4

�[min (S ,S ) �min (S ,S )]1 4 2 3

#[min (T ,T ) �min (T ,T )]}1 4 2 3

and are iid with cumulative distribution{(S ,T ):i p 1,…,n}i i

function . Then, for andF(S,T) X p min (S ,S ) Y p1 2

, is the covariance of X and Y. The proof ismin (T ,T ) j1 2 xy

provided in appendix A.
As a result of the proposition, the unique unbiased estimator

of the covariance has the form of a U-statistic,jxy

�1U nĵ p w[(S ,T ),…,(S ,T )] ,( ) �xy 4 i i i i1 1 4 4
(n,4)

where the sum is taken over all distinct four-element� (n,4)

subsets from . The unobservable random{i ,i ,i ,i } {1,…,n}1 2 3 4

variables and in the kernel function w aremin (S ,S ) min (T ,T)i j i j

then approximated by the corresponding observable random
variables and . Hence, the kernel function can be ap-X Yij ij

proximated as

1
w[(S ,T ),…,(S ,T )] ≈ [(X � X )(Y � Y )i i i i i i i i i i i i1 1 4 4 1 2 3 4 1 2 3 46

�(X � X )(Y � Y )i i i i i i i i1 3 2 4 1 3 2 4

�(X � X )(Y � Y )] .i i i i i i i i1 4 2 3 1 4 2 3

Denote the variances of X and Y by and , respectively.j jx y

These are also statistical functionals of degree 4:

j p E[w (S ,…,S )]x x 1 4

� � 4

p … w (s ,…,s ) dF(s ) ,�� � x 1 4 i
ip10 0
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where

1 2w (S ,…,S ) p {[min (S ,S ) �min (S ,S )]x 1 4 1 2 3 46

2�[min (S ,S ) �min (S ,S )]1 3 2 4

2�[min (S ,S ) �min (S ,S )] } .1 4 2 3

One may likewise express and for the variance of Y.j wy y

Then, the unique unbiased estimators for and are bothj jx y

U-statistics

�1U nĵ p w (S ,…,S )( ) �x 4 x i i1 4
(n,4)

and

�1U nĵ p w (T ,…,T ) ,( ) �y 4 y i i1 4
(n,4)

where the kernel functions and are approximated byw wx y

1 2 2w (S ,…,S ) ≈ [(X � X ) � (X � X )x i i i i i i i i i i1 4 1 2 3 4 1 3 2 46

2�(X � X ) ]i i i i1 4 2 3

and

1 2 2w (T ,…,T ) ≈ [(Y � Y ) � (Y � Y )y i i i i i i i i i i1 4 1 2 3 4 1 3 2 46

2�(Y � Y ) ] .i i i i1 4 2 3

A reasonable estimator of the correlation is thenrxy

UĵxyUr̂ p .xy U U�ˆ ˆj jx y

Up to this point, we have considered the length of haplotype
sharing to one side of a reference locus. Another correlation
coefficient, , can be computed likewise for the length ofUr̂ ′ ′x y

haplotype sharing to the other sides of a pair of loci. An es-
timator of D, denoted by , is then the arithmetic mean ofUD̂

and . This measure has reduced variance compared withU Uˆ ˆr r ′ ′xy x y

the two individual correlation coefficients (Y. Wang, unpub-
lished results).

Although, theoretically, correlation coefficients range from
�1 to 1, values are seldom negative in our numerical stud-UD̂
ies. Negative values may occur because of stochastic variation
around the true value of zero. In practice, those negative values
can be converted to zero.

An Estimator of D Based on Weighted U-Statistics: UD̂

for Nondistinct Haplotypes

Next, consider the case in which the n observed haplotypes
are not necessarily distinct. Suppose there are m distinct hap-
lotypes that follow a multinomial distribution{h :i p 1,…,m}i

with parameters ( ), where are haplotypen,v v p {v i p 1,…,m}i

frequencies. The haplotype frequencies are the empirical fre-
quencies for phase-known genotype data or may be inferred
in the case of unphased data. Among all the distinct four-
element subsets of , the probability for a given subset{1,…,m}

is , where the de-U U(i ,i ,i ,i ) w (i ,i ,i ,i ) p 4!v v v v /W1 2 3 4 1 2 3 4 i i i i1 2 3 4

nominator is chosen so that .U UW � w (i ,i ,i ,i ) p 11 2 3 4(m,4)

Then, Lee (1990, p. 64) implies that unbiased estimators for
the variances and covariance of X and Y can be obtained from
U-statistics weighted by :Uw

�1U m Uĵ p w (i ,i ,i ,i )w[(S ,T ),…,(S ,T )] ,( ) �xy 4 1 2 3 4 i i i i1 1 4 4
(m,4)

�1U m Uĵ p w (i ,i ,i ,i )w (S ,…,S ) ,( ) �x 4 1 2 3 4 x i i1 4
(m,4)

and

�1U m Uĵ p w (i ,i ,i ,i )w (T ,…,T ) .( ) �y 4 1 2 3 4 y i i1 4
(m,4)

For n distinct haplotypes, the weighted U-statistics reduce
to the unweighted U-statistics. The correlation coefficient
based on weighted U-statistics can be readily applied to un-
phased genotype data, after haplotype frequencies { } are in-vi

ferred through, for instance, the expectation-maximization
(EM) algorithm (Excoffier and Slatkin 1995; Hawley and Kidd
1995; Long et al. 1995).

An Alternative Naive Estimator of D, D̂

The computation of as defined above involves enumer-UD̂

ating all distinct four-element subsets ofm( ) {i ,i ,i ,i }4 1 2 3 4

and can be burdensome when the number of distinct{1,…,m}
haplotypes m is large. When the dependence structure within

and within is ignored, intensive computation can beX Y
avoided by using a naive estimator of .r̂ rxy xy

In the case of n distinct haplotypes,

¯ ¯(X � X)(Y � Y)�1 ij ijnr̂ p ,( ) �xy 2 �ˆ ˆ(n,2) j jx y

where and are the usual sample means and var-¯ ¯ˆ ˆ(X,j ) (Y,j )x y

iances for the elements of and , respectively.n( ) X Y2

In the case of nondistinct haplotypes, each term within the
summation above can be weighted by the probability of ob-
serving the subset from :(i,j) {1,…,m}

2v vi jw(i,j) p .n
21 � � vk

kp1

Hence,

¯ ¯w(i,j)(X � X)(Y � Y)�1 ij ijmr̂ p ,( ) �xy 2 �ˆ ˆ(m,2) j jx y
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Table 1

SDs of and in a Simulation StudyUˆ ˆD D

SAMPLE

SIZE

(n)

SD

kbd p 5 kbd p 50 kbd p 100

UD̂ D̂ UD̂ D̂ UD̂ D̂

50 .0572 .0579 .0814 .0835 .0532 .0540
200 .0239 .0245 .0387 .0397 .0228 .0231
500 .0154 .0158 .0226 .0232 .0132 .0135

NOTE.—SDs were calculated for 300 random samples of n
haplotypes for three marker pairs arbitrarily chosen with phys-
ical distance , 50, and 100 kb.d p 5

Figure 2 Boxplots of biases for the two estimators and .Uˆ ˆD D

From a simulated population of haplotypes, 300 randomN p 4,000
samples of n haplotypes were drawn for , 200, and 500. Uˆn p 50 D

and were calculated for a particular marker pair located 5 kb apart.D̂

The six boxplots (from left to right) are for , , , , ,U U Uˆ ˆ ˆ ˆ ˆD D D D D50 50 200 200 500

and , where the numbers in the subscript denote the sample size,D̂500

n.

where and are also weighted by ,ˆ ˆj j w(i,j)x y

�1m 2¯ĵ p w(i,j)(X � X) ,( ) �x 2 ij
(m,2)

and

�1m 2¯ĵ p w(i,j)(Y � Y) .( ) �y 2 ij
(m,2)

Therefore, we propose, as a computationally simpler esti-
mator , the average of and . Simulation studies showˆ ˆ ˆD r r ′ ′xy x y

that serves as a good approximation of (see the “Results”Uˆ ˆD D

section). The two estimators are summarized in appendix B.
An R package, haploshare, was developed and used to imple-
ment computation of the two estimators.

Estimation of D for Unphased Data

For estimation of D from unphased data, a straightforward
two-stage scheme can be adopted. In the first stage, either
haplotypes and their frequencies are inferred for the whole
data set or phases are inferred for each individual chromosome.
We prefer the first approach through the EM algorithm, be-
cause it produces unbiased estimates of haplotype frequencies,
which can then be used in the second stage to calculate , orUD̂

as in the setting of nondistinct haplotypes. The second ap-D̂

proach usually results in many ambiguous phases for individ-
ual chromosomes, which may compromise the accuracy and
stability of and .Uˆ ˆD D

Results

To investigate properties of D and its estimators andUD̂

, we performed a series of simulation studies based onD̂

genotype data generated by the ms program (Hudson
2002) using the finite-site uniform recombination model.
Under this model, the recombination rate for a fixed
physical distance should be constant in a given sample,
leading to our expectation that LD decays at a constant
rate. The crossover probability was chosen to be �810
bp�1 for adjacent base pairs, to approximate the average
recombination rate for the human genome (i.e., 1 cM
per Mb). We then applied our new method to HapMap
data, to study human fine-scale genomewide LD
patterns.

Comparison of to Its Approximation and ImpactUˆ ˆD D

of Sample Size

We first focused, for simplicity, on fully phased data,
to assess our two main estimators of the LD parameter
D. Since the underlying parameter value D cannot be
explicitly specified in the simulations with ms, we gen-
erated a large population of haplotypes ( ) forN p 4,000
666 markers covering 300 kb and set asUD̂ p 0.8484000

the true D for a given marker pair located 5 kb apart.
Then, 300 samples were drawn from the simulated pop-
ulation for sample sizes , 200, and 500. For eachn p 50
sample, both and were calculated. In figure 2, box-Uˆ ˆD D

plots of the biases and for these 300 sam-Uˆ ˆD � D D � D

ples suggest that, as sample size n increases, both esti-
mators converge to the true D. The same analysis was
performed for marker pairs located 50 kb and 100 kb
apart, and similar results for the biases and variances of

and were produced. For all three marker pairs, theUˆ ˆD D

SDs for are slightly smaller than those for (tableUˆ ˆD D

1). Overall, however, the dependence structures within
and within do not seem to have much impact onX Y

the estimation of the correlation coefficient of X and Y,
and, in practice, the two estimators, and , can beUˆ ˆD D

considered equivalent.
On the basis of these results and because of its sim-
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Figure 3 Pairwise LD measured as a function of physical dis-
tance d. A, ; B, ; C, . Hexagonal bins of different areas are′ 2 ˆFDF r D

used to represent counts (Bioconductor R package hexbin). Locally
weighted scatterplot-smoothing (lowess) curves are plotted in black,
with the smooth (the Y-axis value) at each value influenced by 5%
data points. For SNP data simulated under the uniform recombination
model, LD decays exponentially at a constant rate, which can be es-
timated on the basis of the linear regression model .ˆE[logD] p �bd
This relationship is plotted with the dotted line.

plicity and computational efficiency, we used the naive
estimator for the remainder of the simulation studiesD̂

and for the HapMap data analysis.

Relationship of with Physical DistanceD̂

A data set of 245 SNPs, with minor-allele frequencies
(MAFs) 15%, was simulated in a region of 500 kb for
200 chromosomes. We focused on 81 SNPs spanning
the 200-kb region of interest. Other markers on the
flanking regions of the 200-kb region provide infor-
mation about the length of haplotype sharing for a ref-
erence locus at the edge of the region of interest. We
computed and displayed the three pairwise LD measures

(fig. 3A), (fig. 3B), and (fig. 3C) for each of the′ 2 ˆD r D

SNP pairs in the region of interest. Visu-81( ) p 3,2402

alization tools from the Bioconductor R hexbin package
were applied to produce “2D histograms,” which rep-
resent the density of data points in a scatterplot by using
hexagonal bins of varying areas. Both and tend′ 2FD F r
to decrease as physical distance d increases, as shown
by the locally weighted scatterplot-smoothing (lowess)
curves. However, and are highly variable at any′ 2FD F r
given d. In contrast, has a nearly deterministic rela-D̂

tionship with d.
Moreover, the lowess curve for nearly overlaps theD̂

exponential function (fig. 3C, dotted line), im-ˆexp(�bd)
plying that the relationship between and d fits theD̂

expectation that LD decays exponentially with increas-
ing genetic distance, which is equivalent to physical dis-
tance d on a fine scale under the uniform-recombination
model. Specifically, is nearly 1 for any pair of closelyD̂

located SNPs and decreases at a constant rate. By fitting
the linear model , the LD-decay rate mayˆE[log D] p �bd
be estimated as , meaning that decays ex-ˆ ˆb p 0.014 D

ponentially at a rate of 0.014 per kb in the region of
interest.

Impact of Phase-Information Loss on D̂

Estimation of D, given phase-unknown genotype data,
relies on the inference of haplotypes and their frequen-
cies. For a large number of markers, haplotype inference
can be very computationally challenging, and many ex-
isting programs adopt partition-ligation techniques in
which the sequence of markers is partitioned into blocks.
However, this strategy may compromise the accuracy of
inferred haplotypes for the entire marker sequence. In
the following simulation study, we studied how well D̂

performs for unphased data with different numbers of
markers used for haplotype estimation. It was expected
that the more accurate the inferred haplotypes, the more
robust the estimated D. Here, haplotypes were estimated
using the software package HPlus, which applies esti-
mating equation theory to implement efficient maxi-
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Figure 4 Application of to unphased genotype data. All 245D̂

SNPs (A), 30 SNPs in each of the two flanking regions in addition to
the 81 SNPs in the region of interest (B), and 10 SNPs in each of the
two flanking regions, in addition to the 81 SNPs in the region of interest
(C), are used for haplotype estimation before pairwise is calculatedD̂

for the 81 SNPs and plotted against physical distance in each situation.

mum-likelihood estimation of haplotype frequencies and
their variances (Li et al. 2003).

We randomly paired the above 200 haplotypes to cre-
ate 100 diploid individuals with unphased genotypes.
The region of interest was still the 200 kb containing
the 81 SNPs. First, haplotypes were estimated for the
entire set of 245 SNPs. On the basis of inferred hap-
lotypes with estimated frequencies 10.02%, the naive
estimator was then computed for the 3,240 SNP pairsD̂

and was plotted against physical distances d (fig. 4A).
Next, we reduced the number of markers to be haplo-
typed to 141 and 101, corresponding to 30 and 10,
respectively, SNPs in each flanking region, in addition
to the 81 SNPs in the region of interest. Figure 4B and
4C show that smaller variations of , at any given dis-D̂

tance d, are observed for the smaller numbers of mark-
ers. These results suggest that performs well for un-D̂

phased data and has a similar relationship with physical
distance d (fig. 3C), especially when markers are chosen
in such a way that haplotypes are inferred reliably.

However, it is not true that the fewer the markers the
better. Comparing figures 4B and 4C, we observe that
D is underestimated when only 10 SNPs instead of 30
are used in the flanking regions to evaluate the length
of haplotype sharing. As a result, the LD-decay rates in
the two analyses are different, with in figureb̂ p 0.016
4B and in figure 4C, the former being muchb̂ p 0.024
closer to that estimated with phased data ( )b̂ p 0.014
using all 245 SNPs.

Therefore, there appears to be the following trade-off.
With reduction of the number of markers to be haplo-
typed and used to evaluate the lengths of haplotype shar-
ing, haplotype inference is more reliable, leading to more
robust estimation of D. However, the lengths of haplo-
type sharing might be more censored (see the “Discus-
sion” section) or evaluated on the basis of sparser sets
of SNPs (see the “Impact of Marker Density on ” sub-D̂

section), which would lead to biased estimation of D.
Note that, even though estimation of D is biased (as in
fig. 4C), the strong relationship of with physical dis-D̂

tance is still present, which implies the potential use-
fulness of in this situation.D̂

Impact of Marker Density on D̂

Marker density can have a significant impact on how
well the length of haplotype sharing approximates the
length of the common ancestral segment. Generally
speaking, the denser the marker map, the better the ap-
proximation. To study the effect of marker density on

, we simulated a data set of 200 haplotypes in a regionD̂

of size 180 kb. From the 196 SNPs with MAFs 11% in
the middle 100-kb region of interest, we randomly se-
lected subsets of SNPs according to the following per-
centages: 90%, 70%, 50%, 30%, and 10%. These per-
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Figure 5 Robustness of and its estimated decay rate toˆD̂ b

marker density. A, Distributions of for pairs of SNPs that are locatedD̂

15–16 kb apart for different marker densities. B, Distributions of es-
timated LD-decay rates for 200 SNP subsets randomly selected forb̂

each marker density. The scale of the vertical axis was chosen to match
that in figure 7.

centages allowed us to monitor the stability of for aD̂

fixed physical distance d, since the marker density de-
creases from 20 to 2 SNPs per 10 kb. This random
selection of markers produced similar distributions of
MAFs across different subsets, so that the effects of
marker density and marker-allele frequency (a poten-
tially influential factor in the behavior of an LD measure)
are not confounded. Figure 5A shows the distributions
of for pairs of markers located 15–16 kb apart forD̂

different marker densities. Although tends to decreaseD̂

slightly as marker density decreases, is generally robustD̂

to marker density. Similar patterns of robustness were
observed for other values of the physical distance d.

The impact of marker density on the estimated rate
of LD decay was also investigated. The process for se-
lecting random subsets of the original markers was re-
peated 200 times for each marker density, and the LD-
decay rate b was estimated each time (fig. 5B). In general,

appears to be fairly stable for marker densities of �6b̂

SNPs per 10 kb but not for the low density of 2 SNPs
per 10 kb, because of the loss of precision for measuring
the length of haplotype sharing. Note that, as the marker
density decreases, the number of marker pairs decreases,
so that is estimated with larger variance.b̂

Impact of Marker-Allele Frequency on D̂

Conventional two-point LD measures are very sen-
sitive to marker-allele frequency. To investigate the sen-
sitivity of to marker-allele frequency, we used subsetsD̂

of SNPs with different MAFs from one simulated data
set to calculate for pairs of markers in each SNP subset.D̂

The minimum MAFs in each subset were 0%, 1%, 5%,
10%, and 20%. The corresponding marker densities for
each subset were approximately 23, 19, 12, 10, and 6
SNPs per 10 kb. In this range of marker densities, on
the basis of the above results, D and its decay rate b can
be robustly and reliably estimated. Clearly, the ex-
ponential relationship between and d and the lowD̂

variability of at any given d are both maintained acrossD̂

the five SNP subsets. For pairs of SNPs located a certain
distance away from each other—say, 10–11 kb— isD̂

fairly stable in terms of its median and interquartile
range across subsets of SNPs with different MAFs (fig.
6). In contrast, is more likely to be 1 and is more′ 2FD F r
likely to be close to 0 when SNPs with lower MAFs are
included in the analysis. Thus, both and are′ 2FD F r
highly sensitive to allele frequencies. Furthermore, the
estimated rate of LD decay is also very robust to SNPb̂

allele frequency, ranging from 0.009 to 0.011 across sub-
sets of SNPs.

Relationship of with Recombination RateD̂

In the ms program, recombination rates for the sim-
ulated data can be controlled by crossover probabilities
for adjacent base pairs. The following four values for
the crossover probability were considered: , ,�9 �810 10

, and per kb. For a fixed physical distance—�7 �610 10
say, –16 kb— decreases as the recombinationˆd p 15 D

rate increases (fig. 7A). Furthermore, LD-decay rates,
estimated for 200 independently simulated data sets in
each setting, were strongly related to recombination
rates (fig. 7B).

Analysis of HapMap SNP Data for the X Chromosome

We applied D to HapMap data (phase I) for the X
chromosomes of 30 mothers in the CEPH population
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Figure 6 Robustness of LD measures to marker-allele frequency.
Distributions of , , and for SNP pairs that are located 10–11′ 2 ˆFDF r D

kb apart, with use of subsets of SNPs with MAFs (from left to right)
of at least 0%, 1%, 5%, 10%, and 20%, for each measure.

Figure 7 and its estimated decay rate as a function of re-ˆD̂ b

combination rate. A, Distributions of for pairs of SNPs that areD̂

located 15–16 kb apart, for different crossover probabilities for ad-
jacent base pairs. B, Distributions of estimated LD-decay rates , forb̂

200 simulations at different crossover probabilities.

(Utah residents with ancestry from northern and western
Europe). Genotypes were fully phased at 56,001 SNPs,
among which there were 19,127 monomorphic SNPs.
LD-decay rates b were estimated at every polymorphic
SNP locus by applying the method of least squares to
the exponential-decay model for . Specifically, pairwiseD̂

was computed from neighboring polymorphic SNPsD̂

within 100-kb windows, as long as there were �7 poly-
morphic SNPs, so that the number of marker pairs used
to estimate b was at least 21 (fig. 8A). The lengths of
haplotype sharing were evaluated in 1.1-Mb regions sur-
rounding every polymorphic SNP. The marker density
was adequately high in 99% of these regions (12 per 10
kb) to support reliable estimation of D and its decay rate
b. The results show that LD on the X chromosome de-
cays exponentially at an average rate of 0.0073 per kb
within 100-kb windows, whereas, at certain loci, the rate
can reach 0.054 per kb. Figure 8B provides a higher-
resolution display for 100 polymorphic SNPs in the
12.89–13.17-Mb region. Pseudocolor images of pair-
wise , , and matrices in this region are displayed′ 2 ˆFD F r D

in figure 8D–8F. Note the much “smoother” appearance
of the pseudocolor image for , which clearly suggestsD̂

blocks of markers with high LD.

Actual genomic data are different from simulated data
in one important aspect. The recombination rate can be
fixed in the simulated data, whereas it varies greatly in
the real data. Since recombination causes LD decay, the
recombination rate is directly related to the LD-decay
rate, as shown in the simulation studies above. Thus,
we do not expect LD to decay at a homogeneous rate
in the human genome. However, in the linear-regression
model used to estimate the LD-decay rate, LD is assumed
to decay at a constant rate within the region of interest.
The result therefore reflects the rate at which LD decays,
on average, over the region. We have chosen to estimate
LD-decay rates on the basis of regions of only 100 kb,
with the hope that the LD-decay rate does not change
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Figure 8 LD measures for HapMap data for 56,001 SNPs on the X chromosomes of 30 women in the CEPH population. A, LD-decay
rates at every SNP locus, estimated from polymorphic SNPs in the neighboring 100-kb region. B, Display with higher resolution for an arbitrarily
selected region of 275 kb. C, Residual plot from fitting the linear-regression model with data from the 275-kb region. AdjacentˆE[logD] p �bd
marker pairs with large negative residuals are heuristically considered recombination hotspots and are plotted using colored dots, with red
representing even more extreme residuals than blue. D–F, Pseudocolor images of pairwise , , and matrices. The red and blue dashed′ 2 ˆFDF r D

lines correspond to the marker pairs plotted using red and blue dots in panel C.

dramatically within such relatively small regions. How-
ever, this assumption could still be violated because of
recombination hotspots. A recombination hotspot is a
site prone to recombination and is experimentally iden-
tified as a region as narrow as 1–2 kb, where recom-
bination rates are higher than in neighboring regions
(Jeffreys et al. 2001). Therefore, LD decays faster across
such a hotspot. If a smaller window size is used, the
reduced number of markers may be insufficient for stable
parameter estimation in the regression model. More
methodological work concerning the development of in-
dices for the investigation of fine-scale LD is needed. We
anticipate that the new LD measure D will make valuable
contributions to this endeavor.

As an example of the usefulness of our new LD mea-
sure, a heuristic analysis of data for the 275-kb region

in figure 8B suggests that recombination hotspots may
be identified as follows on the basis of . We focus onD̂

all adjacent marker pairs in the region of interest, as
long as can be calculated on the basis of markersD̂

with density higher than 2 SNPs per 10 kb. The tight
relationship between and physical distance d is ex-D̂

pected to be maintained for these marker pairs. Under
the assumption that LD decays at the same rate across
all adjacent marker pairs, the regression model

was fit. Outlier adjacent marker pairs,ˆE[log D] p �bd
with unexpectedly small residuals (i.e., large negative
values), can be considered as recombination hotspots
and identified through model diagnostic techniques.
However, usual model diagnostic techniques are not ap-
plicable here because of the dependence of betweenD̂

adjacent marker pairs (as shown by the residual plot in
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fig. 8C). In this article, we do not intend to address in
depth the issue of outlier detection. Instead, we graph-
ically illustrate that adjacent marker pairs with extreme
negative residuals (plotted by the red and blue dots in
fig. 8C) correspond to potential recombination hotspots
(indicated by the red and blue lines, respectively, in fig.
8D–8F).

Discussion

The proposed LD measure D is based on the unobserv-
able lengths of common ancestral segments, which are
approximated by shared haplotype lengths. The degree
of precision for this approximation, influenced by sev-
eral factors, directly affects estimation of D. Here, we
examine the following factors one by one: distinction
between IBD and IBS status, marker density, and cen-
soring of shared haplotype lengths.

First, the length of a common ancestral segment is
best measured on the basis of alleles IBD for a chro-
mosome pair. However, in practice, it is often impossible
to distinguish between IBD and IBS. Here, we argue that

and remain robust to discrepancies between IBDUˆ ˆD D

and IBS. In the presence of alleles IBS for a long sequence
of contiguous loci, the probability of IBD at each locus
is greatly elevated and so is the probability that these
loci belong to a common ancestral segment. The larger
the length of haplotype sharing by state, the higher the
probability of IBD. On the other hand, for chromosome
pairs that do not share common ancestral segments, the
probability of sharing alleles IBS at a long sequence of
contiguous loci is very small. We do not expect the back-
ground level of haplotype sharing due to IBS to have a
significant effect on and , because these estimatorsUˆ ˆD D

are mostly determined by large shared haplotype lengths
at both loci, which are more likely to be due to IBD.
Therefore, and should be robust to the approxi-Uˆ ˆD D

mation of IBD by IBS.
Second, higher marker densities lead to better ap-

proximation of the lengths of common ancestral seg-
ments by the lengths of shared haplotypes. On the basis
of our simulation studies, the impact of marker density
on estimation of D is very limited once this density is
above a certain threshold—namely, 2 SNPs per 10 kb—
which is feasible given the imminent availability of ultra-
high-volume genotyping platforms. Note that one need
not identify tagging SNPs when markers are used for
the purpose of tracking the length of haplotype sharing.
In fact, subsetting SNPs does not enhance but impairs
accurate evaluation of the length of haplotype sharing
because of reduced marker density.

Third, censoring at the edge of the genotyped region
is an important practical issue to be considered. For a
region of relatively small size, the length of haplotype
sharing may not be observed to its full extent for some

chromosome pairs that share extensively long common
haplotypes. For genome-scan data, the same problem is
present when evaluating the length of haplotype sharing
for a reference locus close to a telomere or when dealing
with phase-unknown data with a moderate number of
markers used for haplotype inference. This phenomenon
is very similar to censoring for survival time and may
bias and . Further research is needed to adjust theseUˆ ˆD D

estimators if censoring is involved at one or both mark-
ers. For the time being, we recommend that caution be
taken for small genotyped regions and that or beUˆ ˆD D

calculated only if flanking regions of decent sizes are
also genotyped. Just as there exists a threshold for
marker density above which stabilizes, there is suchD̂

a threshold for the size of flanking regions. Adequate
flanking region sizes are usually determined by how fast
LD decays in these regions. For instance, when LD de-
cays fast, smaller flanking regions are considered ade-
quate. For HapMap X-chromosome data, the lengths of
haplotype sharing were calculated using 500-kb flanking
regions on both sides of the reference locus. In addition,
to avoid censoring around telomeres, we used only the
correlation coefficient for the right-sided or left-sided
lengths of haplotype sharing for markers around the left
or right, respectively, telomere.

Finally, we address the connections and differences
between recombination hotspots and boundaries for
haplotype blocks, since the latter have become accepted
as a general model for LD patterns throughout the ge-
nome. Both terms describe patterns of LD and were often
used interchangeably in the past. For instance, Anderson
and Novembre (2003) evaluated their method for iden-
tifying block boundaries by simulation studies in which
recombination hotspots were generated as block bound-
aries. From the example in the “Results” section, the
identified hotspots seemingly are good candidates for
block boundaries. However, the two terms refer to dif-
ferent phenomena, and different methods may be re-
quired in practice to detect them. For recombination
hotspots at which LD decays faster than in other regions,
LD decay rate is an important aspect because physical
distance plays an essential role. In the HapMap data
analysis, hotspots were identified on the basis of resid-
uals for a fitted exponential-decay model for and dD̂

instead of on the basis of only. In contrast, blockD̂

boundaries are traditionally chosen to achieve low hap-
lotype diversity within each block, on the basis of sig-
nificantly low LD values, without taking physical dis-
tance into consideration.

In conclusion, simulation studies and analysis of
HapMap data demonstrate that our proposed LD mea-
sure D and its estimators and are superior to twoUˆ ˆD D

of the most popular two-point LD measures, in terms
of their relationship with physical distance, their small
variability at any given distance, and their robustness to
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SNP allele frequencies. In contrast to alternative LD
measures that are based on population genetics models,
D is a robust empirical measure and should be applicable
regardless of population structure. A definition of LD-
decay rate and a regression-based method for estimating
such rates were proposed, and simulation studies dem-
onstrated that the LD-decay rate was a function of the
recombination rate. The new LD measure D is a prom-
ising tool for studying population genetics and for map-
ping complex disease genes. Our proposed methods can
also be readily applied to data for more polymorphic

DNA markers (e.g., microsatellites) or amino acid se-
quence data without further extension.
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Appendix A

Proof of the Proposition

Define and . Since are iid, we have andX p min (S ,S ) Y p min (T ,T) (S ,T ), … ,(S ,T ) E(X Y ) p E(X Y )ij i j ij i j 1 1 4 4 12 12 34 34

. Then,E(X Y ) p E(X Y ) p E(X )E(Y )12 34 34 12 12 12

E{[min (S ,S ) � min (S ,S )][min (T ,T ) � min (T ,T )]} p E[(X � X )(Y � Y )]1 2 3 4 1 2 3 4 12 34 12 34

p E(X Y � X Y � X Y � X Y )12 12 12 34 34 12 34 34

p 2E(X Y ) � 2E(X )E(Y ) .12 12 12 12

Similarly,

E{[min (S ,S ) � min (S ,S )][min (T ,T ) � min (T ,T )]} p E{[min (S ,S ) � min (S ,S )]1 3 2 4 1 3 2 4 1 4 2 3

#[min (T ,T ) � min (T ,T )]}1 4 2 4

p 2E(X Y ) � 2E(X )E(Y ) .12 12 12 12

Therefore, is the covariance of X and Y.E{w[(S ,T ), … ,(S ,T )]} p E(X Y ) � E(X )E(Y )1 1 4 4 12 12 12 12

Appendix B

Two Estimators of D

Suppose that, among a random sample of n chromosomes, there are m distinct haplotypes for{h :i p 1, … ,m}i

a region that covers two loci of interest, A and B. The haplotypes follow a multinomial distribution with{h }i
parameters , where are either empirical or inferred haplotype frequencies. Let(n,v) v p {v :i p 1, … ,m} X pi

and denote the pairwise lengths of one-sided shared haplotypes{X :i,j p 1, … ,m,i ! j} Y p {Y :i,j p 1, … ,m,i ! j}ij ij

for loci A and B, respectively. Similarly, let and denote the lengths of shared haplotypes on the other sides′ ′X Y
of loci A and B. The following two estimators of D are both arithmetic means of correlation-coefficient estimators

and , based on two different estimation approaches.ˆ ˆr r ′ ′xy x y

1. For the U-statistic–based estimator , define functionsUD̂

1
ŵ (i ,i ,i ,i ) p [(X � X )(Y � Y ) � (X � X )(Y � Y ) � (X � X )(Y � Y )] ,xy 1 2 3 4 i i i i i i i i i i i i i i i i i i i i i i i i1 2 3 4 1 2 3 4 1 3 2 4 1 3 2 4 1 4 2 3 1 4 2 36
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1 2 2 2ŵ (i ,i ,i ,i ) p [(X � X ) � (X � X ) � (X � X ) ] ,x 1 2 3 4 i i i i i i i i i i i i1 2 3 4 1 3 2 4 1 4 2 36

and

1 2 2 2ŵ (i ,i ,i ,i ) p [(Y � Y ) � (Y � Y ) � (Y � Y ) ] .y 1 2 3 4 i i i i i i i i i i i i1 2 3 4 1 3 2 4 1 4 2 36

Then,

U ˆw (i ,i ,i ,i )w (i ,i ,i ,i )�1 1 2 3 4 xy 1 2 3 4U mr̂ p ,( ) �xy 4 U U�ˆ ˆ(m,4) j jx y

where

�1U m U ˆĵ p w (i ,i ,i ,i )w (i ,i ,i ,i )( ) �x 4 1 2 3 4 x 1 2 3 4
(m,4)

and

�1U m U ˆĵ p w (i ,i ,i ,i )w (i ,i ,i ,i ) ,( ) �y 4 1 2 3 4 y 1 2 3 4
(m,4)

with the weight function proportional to .Uw (i ,i ,i ,i ) v v v v1 2 3 4 i i i i1 2 3 4

2. For the naive estimator ,D̂

¯ ¯w(i,j)(X � X)(Y � Y)�1 ij ijmr̂ p ,( ) �xy 2 �ˆ ˆ(m,2) j jx y

where and denote the sample means for and , and¯ ¯X Y X Y

�1m 2¯ĵ p w(i,j)(X � X)( ) �x 2 ij
(m,2)

and

�1m 2¯ĵ p w(i,j)(Y � Y) ,( ) �y 2 ij
(m,2)

with the weight function proportional to .w(i,j) v vi j
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